The serine-threonine kinase LKB1 is essential for survival under energetic stress in zebrafish.

نویسندگان

  • Yme U van der Velden
  • Liqin Wang
  • John Zevenhoven
  • Ellen van Rooijen
  • Maarten van Lohuizen
  • Rachel H Giles
  • Hans Clevers
  • Anna-Pavlina G Haramis
چکیده

Mutations in the serine-threonine kinase (LKB1) lead to a gastrointestinal hamartomatous polyposis disorder with increased predisposition to cancer (Peutz-Jeghers syndrome). LKB1 has many targets, including the AMP-activated protein kinase (AMPK) that is phosphorylated under low-energy conditions. AMPK phosphorylation in turn, affects several processes, including inhibition of the target of rapamycin (TOR) pathway, and leads to proliferation inhibition. To gain insight into how LKB1 mediates its effects during development, we generated zebrafish mutants in the single LKB1 ortholog. We show that in zebrafish lkb1 is dispensable for embryonic survival but becomes essential under conditions of energetic stress. After yolk absorption, lkb1 mutants rapidly exhaust their energy resources and die prematurely from starvation. Notably, intestinal epithelial cells were polarized properly in the lkb1 mutants. We show that attenuation of metabolic rate in lkb1 mutants, either by application of the TOR inhibitor rapamycin or by crossing with von Hippel-Lindau (vhl) mutant fish (in which constitutive hypoxia signaling results in reduced metabolic rate), suppresses key aspects of the lkb1 phenotype. Thus, we demonstrate a critical role for LKB1 in regulating energy homeostasis at the whole-organism level in a vertebrate. Zebrafish models of Lkb1 inactivation could provide a platform for chemical genetic screens to identify compounds that target accelerated metabolism, a key feature of tumor cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dysregulation of mTOR activity through LKB1 inactivation

Mammalian target of rapamycin (mTOR) is aberrantly activated in many cancer types, and two rapamycin derivatives are currently approved by the Food and Drug Administration (FDA) of the United States for treating renal cell carcinoma. Mechanistically, mTOR is hyperactivated in human cancers either due to the genetic activation of its upstream activating signaling pathways or the genetic inactiva...

متن کامل

The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress.

AMP-activated protein kinase (AMPK) is a highly conserved sensor of cellular energy status found in all eukaryotic cells. AMPK is activated by stimuli that increase the cellular AMP/ATP ratio. Essential to activation of AMPK is its phosphorylation at Thr-172 by an upstream kinase, AMPKK, whose identity in mammalian cells has remained elusive. Here we present biochemical and genetic evidence ind...

متن کامل

Coordinated cell motility is regulated by a combination of LKB1 farnesylation and kinase activity

Cell motility requires the precise coordination of cell polarization, lamellipodia formation, adhesion, and force generation. LKB1 is a multi-functional serine/threonine kinase that associates with actin at the cellular leading edge of motile cells and suppresses FAK. We sought to understand how LKB1 coordinates these multiple events by systematically dissecting LKB1 protein domain function in ...

متن کامل

Membrane-binding and activation of LKB1 by phosphatidic acid is essential for development and tumour suppression

The serine/threonine kinase LKB1 regulates various cellular processes such as cell proliferation, energy homeostasis and cell polarity and is frequently downregulated in various tumours. Many downstream pathways controlled by LKB1 have been described but little is known about the upstream regulatory mechanisms. Here we show that targeting of the kinase to the membrane by a direct binding of LKB...

متن کامل

miR-144/451 represses the LKB1/AMPK/mTOR pathway to promote red cell precursor survival during recovery from acute anemia

The microRNAs miR-144 and -451 are encoded by a bicistronic gene that is strongly induced during red blood cell formation (erythropoiesis). Ablation of the miR-144/451 gene in mice causes mild anemia under baseline conditions. Here we show that miR-144/451-/- erythroblasts exhibit increased apoptosis during recovery from acute anemia. Mechanistically, miR-144/451 depletion increases the express...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 11  شماره 

صفحات  -

تاریخ انتشار 2011